Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
1.
J Opt Soc Am A Opt Image Sci Vis ; 40(7): VPO1-VPO2, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37706749

ABSTRACT

This feature issue collects articles presented at the tenth Visual and Physiological Optics meeting (VPO2022), held August 29-31, 2022, in Cambridge, UK. This joint feature issue between Biomedical Optics Express and Journal of the Optical Society of America A includes articles that cover the broad range of topics addressed at the meeting and examples of the current state of research in the field.

2.
J Opt Soc Am A Opt Image Sci Vis ; 40(6): D1-D6, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37706753

ABSTRACT

Hartmann-Shack wavefront sensors (HSWSs) are used in many disciplines to measure optical aberrations. Conventionally, the wavefront of interest is transferred onto the lenslet array of the HSWS with a telescopic 4f relay system. However, the 4f relay design restricts the choice of focal lengths and distances used for the relay system. In this paper, we describe a non-4f variant and demonstrate both theoretically and experimentally that its wavefront relaying properties equal that of a 4f system. We also present an alignment method for conjugating the wavefront with the lenslet array of the HSWS for both 4f and non-4f systems.

3.
Biomed Opt Express ; 14(7): 3125-3137, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37497498

ABSTRACT

This study compares the effects on peripheral vision and image quality of four myopia control interventions: a) Perifocal spectacles/ArtOptica, b) Stellest spectacles/Essilor), c) MiyoSmart spectacles/Hoya and d) MiSight contact lenses/CooperVision. Five subjects participated with habitual or no correction as reference. Three techniques were used: 1) Hartmann-Shack sensors for wavefront errors, 2) double-pass imaging system for point-spread-functions (PSF), and 3) peripheral acuity evaluation. The results show that multiple evaluation methods are needed to fully quantify the optical effects of these myopia control interventions. Perifocal was found to make the relative peripheral refraction (RPR) more myopic in all subjects and to interact with the natural optical errors of the eye, hence showing larger variations in the effect on peripheral vision. MiSight had a smaller effect on RPR, but large effect on peripheral vision. Stellest and MiyoSmart also showed small effects on RPR but had broader double-pass PSFs for all participants, indicating reduced retinal contrast. Reduction in peripheral retinal contrast might thereby play a role in slowing myopia progression even when the peripheral refraction does not turn more myopic.

4.
Biomed Opt Express ; 14(7): 3853-3855, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37497525

ABSTRACT

This feature issue collects articles presented at the tenth Visual and Physiological Optics meeting (VPO2022), held August 29-31, 2022, in Cambridge, UK. This joint feature issue between Biomedical Optics Express and Journal of the Optical Society of America A includes articles that cover the broad range of topics addressed at the meeting and examples of the current state of research in the field.

5.
Biomed Opt Express ; 14(6): 2608-2617, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37342694

ABSTRACT

A novel double-pass instrument and its data analysis method for the measurement of central and peripheral refraction is presented and validated in a group of healthy subjects. The instrument acquires in-vivo, non-cycloplegic, double-pass, through-focus images of the eye's central and peripheral point-spread function (PSF) using an infrared laser source, a tunable lens and a CMOS camera. The through-focus images were analyzed to determine defocus and astigmatism at 0° and 30° visual field. These values were compared to those obtained with a lab-based Hartmann-Shack wavefront sensor. The two instruments provided data showing good correlation at both eccentricities, particularly in the estimation of defocus.

6.
J Opt Soc Am A Opt Image Sci Vis ; 39(6): B39-B49, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-36215526

ABSTRACT

Multifocal contact lenses are increasingly popular interventions for controlling myopia. This study presents the short-term effects of multifocal contact lenses on foveal and peripheral vision. The MiSight contact lenses designed to inhibit myopia progression and the 1-Day Acuvue Moist contact lenses designed for presbyopia were investigated. The MiSight produced similar foveal results to spectacles despite the increased astigmatism and coma. The MiSight also reduced the low-contrast resolution acuity in the periphery, despite no clear change in relative peripheral refraction. When compared with spectacles, Acuvue Moist decreased accommodative response and reduced foveal high- and low-contrast resolution acuity, whereas peripheral thresholds were more similar to those of spectacles. The most likely treatment property for myopia control by the MiSight is the contrast reduction in the peripheral visual field and the changed accommodation.


Subject(s)
Contact Lenses , Myopia , Accommodation, Ocular , Eyeglasses , Humans , Myopia/therapy , Visual Acuity
7.
Biomed Opt Express ; 13(12): 6508-6532, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36589577

ABSTRACT

In their pioneering work demonstrating measurement and full correction of the eye's optical aberrations, Liang, Williams and Miller, [JOSA A14, 2884 (1997)10.1364/JOSAA.14.002884] showed improvement in visual performance using adaptive optics (AO). Since then, AO visual simulators have been developed to explore the spatial limits to human vision and as platforms to test non-invasively optical corrections for presbyopia, myopia, or corneal irregularities. These applications have allowed new psychophysics bypassing the optics of the eye, ranging from studying the impact of the interactions of monochromatic and chromatic aberrations on vision to neural adaptation. Other applications address new paradigms of lens designs and corrections of ocular errors. The current paper describes a series of AO visual simulators developed in laboratories around the world, key applications, and current trends and challenges. As the field moves into its second quarter century, new available technologies and a solid reception by the clinical community promise a vigorous and expanding use of AO simulation in years to come.

8.
Biomed Opt Express ; 12(6): 3082-3090, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-34221646

ABSTRACT

The impact of peripheral optical errors induced by intraocular lenses was evaluated by simulating the average phakic and pseudophakic image qualities. An adaptive optics system was used to simulate the optical errors in 20° nasal and inferior visual field in phakic subjects. Peripheral resolution acuity, contrast sensitivity and hazard detection were evaluated. Pseudophakic errors typical for monofocal designs had a negative effect on resolution acuity and contrast sensitivity and the hazard detection task also showed increased false positive and misses and a longer reaction time compared to phakic optical errors. The induced peripheral pseudophakic optical errors affect the peripheral visual performance and thereby impact functional vision.

9.
Biomed Opt Express ; 12(12): 7422-7433, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-35003843

ABSTRACT

The difference in peripheral retinal image quality between myopic and emmetropic eyes plays a major role in the design of the optical myopia interventions. Knowing this difference under accommodation can help to understand the limitations of the currently available optical solutions for myopia control. A newly developed dual-angle open-field sensor was used to assess the simultaneous foveal and peripheral ( 20 ∘ nasal visual field) wavefront aberrations for five target vergences from -0.31 D to -4.0 D in six myopic and five emmetropic participants. With accommodation, the myopic eyes showed myopic shifts, and the emmetropic eyes showed no change in RPR. Furthermore, RPR calculated from simultaneous measurements showed lower intra-subject variability compared to the RPR calculated from peripheral measurements and target vergence. Other aberrations, as well as modulation transfer functions for natural pupils, were similar between the groups and the accommodation levels, foveally and peripherally. Results from viewing the same nearby target with and without spectacles by myopic participants suggest that the accommodative response is not the leading factor controlling the amplitude of accommodation microfluctuations.

10.
Biomed Opt Express ; 11(6): 3125-3138, 2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32637246

ABSTRACT

We have developed a novel dual-angle open field wavefront sensor. This device captures real-time foveal and peripheral Zernike aberrations, while providing natural binocular viewing conditions for the subjects. The simultaneous data recording enables accurate analysis of changes in ocular optics with accommodation overcoming any uncertainties caused by accommodative lag or lead. The instrument will be used in myopia research to study central and peripheral ocular optics during near work and to investigate the effects of optical myopia control interventions. Proof of concept measurements, performed on an artificial eye model and on 3 volunteers, showed good repeatability with foveal-peripheral data synchronization of 65 msec or better. The deviations from subjective cycloplegic refractions were not more than 0.31 D. Furthermore, we tested the dual-angle wavefront sensor in two novel measurement schemes: (1) focusing on a close target, and (2) accommodation step change.

11.
Ophthalmic Physiol Opt ; 40(3): 300-307, 2020 05.
Article in English | MEDLINE | ID: mdl-32031730

ABSTRACT

PURPOSE: Many myopia control interventions are designed to induce myopic relative peripheral refraction. However, myopes tend to show asymmetries in their sensitivity to defocus, seeing better with hypermetropic rather than myopic defocus. This study aims to determine the influence of chromatic aberrations (CA) and higher-order monochromatic aberrations (HOA) in the peripheral asymmetry to defocus. METHODS: Peripheral (20° nasal visual field) low-contrast (10%) resolution acuity of nine subjects (four myopes, four emmetropes, one hypermetrope) was evaluated under induced myopic and hypermetropic defocus between ±5 D, under four conditions: (a) Peripheral Best Sphere and Cylinder (BSC) correction in white light; (b) Peripheral BSC correction + CA elimination (green light); (c) Peripheral BSC correction + HOA correction in white light; and (d) Peripheral BSC correction + CA elimination + HOA correction. No cycloplegia was used, and all measurements were repeated three times. RESULTS: The slopes of the peripheral acuity as a function of positive and negative defocus differed, especially when the natural HOA and CA were present. This asymmetry was quantified as the average of the absolute sum of positive and negative defocus slopes for all subjects (AVS). The AVS was 0.081 and 0.063 logMAR/D for white and green light respectively, when the ocular HOA were present. With adaptive optics correction for HOA, the asymmetry reduced to 0.021 logMAR/D for white and 0.031 logMAR/D for green light, mainly because the sensitivity to hypermetropic defocus increased when HOA were corrected. CONCLUSION: The asymmetry was only slightly affected by the elimination of the CA of the eye, whereas adaptive optics correction for HOA reduced the asymmetry. The HOA mainly affected the sensitivity to hypermetropic defocus.


Subject(s)
Accommodation, Ocular/physiology , Contrast Sensitivity/physiology , Eyeglasses , Hyperopia/physiopathology , Myopia/physiopathology , Refraction, Ocular/physiology , Visual Acuity , Adult , Female , Humans , Hyperopia/therapy , Male , Middle Aged , Myopia/therapy , Vision Tests
12.
Clin Exp Optom ; 103(1): 86-94, 2020 01.
Article in English | MEDLINE | ID: mdl-31382321

ABSTRACT

Peripheral image quality influences several aspects of human vision. Apart from off-axis visual functions, the manipulation of peripheral optical errors is widely used in myopia control interventions. This, together with recent technological advancements enabling the measurement of peripheral errors, has inspired many studies concerning off-axis optical aberrations. However, direct comparison between these studies is often not straightforward. To enable between-study comparisons and to summarise the current state of knowledge, this review presents population data analysed using a consistent approach from 16 studies on peripheral ocular optical quality (in total over 2,400 eyes). The presented data include refractive errors and higher order monochromatic aberrations expressed as Zernike co-efficients (reported in a subset of the studies) over the horizontal visual field. Additionally, modulation transfer functions, describing the monochromatic image quality, are calculated using individual wavefront data from three studies. The analysed data show that optical errors increase with increasing eccentricity as expected from theoretical modelling. Compared to emmetropes, myopes tend to have more hypermetropic relative peripheral refraction over the horizontal field and worse image quality in the near-periphery of the nasal visual field. The modulation transfer functions depend considerably on pupil shape (for angles larger than 30°) and to some extent, the number of Zernike terms included. Moreover, modulation transfer functions calculated from the average Zernike co-efficients of a cohort are artificially inflated compared to the average of individual modulation transfer functions from the same cohort. The data collated in this review are important for the design of ocular corrections and the development and assessment of optical eye models.


Subject(s)
Corneal Wavefront Aberration/physiopathology , Refraction, Ocular/physiology , Accommodation, Ocular/physiology , Emmetropia/physiology , Humans , Refractive Errors/physiopathology , Visual Fields/physiology
13.
J Opt Soc Am A Opt Image Sci Vis ; 36(4): B52-B57, 2019 Apr 01.
Article in English | MEDLINE | ID: mdl-31044955

ABSTRACT

Correction and manipulation of peripheral refractive errors are indispensable for people with central vision loss and in optical interventions for myopia control. This study investigates further enhancements of peripheral vision by compensating for monochromatic higher-order aberrations (with an adaptive optics system) and chromatic aberrations (with a narrowband green filter, 550 nm) in the 20° nasal visual field. Both high-contrast detection cutoff and contrast sensitivity improved with optical correction. This improvement was most evident for gratings oriented perpendicular to the meridian due to asymmetric optical errors. When the natural monochromatic higher-order aberrations are large, resolution of 10% contrast oblique gratings can also be improved with correction of these errors. Though peripheral vision is mainly limited by refractive errors and neural factors, higher-order aberration correction beyond conventional refractive errors can still improve peripheral vision under certain circumstances.


Subject(s)
Contrast Sensitivity , Refractive Errors/physiopathology , Visual Fields/physiology , Adult , Humans , Middle Aged
14.
Invest Ophthalmol Vis Sci ; 60(3): M132-M160, 2019 02 28.
Article in English | MEDLINE | ID: mdl-30817830

ABSTRACT

The evidence-basis based on existing myopia control trials along with the supporting academic literature were reviewed; this informed recommendations on the outcomes suggested from clinical trials aimed at slowing myopia progression to show the effectiveness of treatments and the impact on patients. These outcomes were classified as primary (refractive error and/or axial length), secondary (patient reported outcomes and treatment compliance), and exploratory (peripheral refraction, accommodative changes, ocular alignment, pupil size, outdoor activity/lighting levels, anterior and posterior segment imaging, and tissue biomechanics). The currently available instrumentation, which the literature has shown to best achieve the primary and secondary outcomes, was reviewed and critiqued. Issues relating to study design and patient selection were also identified. These findings and consensus from the International Myopia Institute members led to final recommendations to inform future instrumentation development and to guide clinical trial protocols.


Subject(s)
Evidence-Based Medicine , Myopia/prevention & control , Randomized Controlled Trials as Topic/standards , Disease Progression , Humans , Internationality , Myopia/diagnosis
15.
Optom Vis Sci ; 95(4): 354-361, 2018 04.
Article in English | MEDLINE | ID: mdl-29561506

ABSTRACT

SIGNIFICANCE: In the field of visual rehabilitation of patients with central visual field loss (CFL), knowledge on how peripheral visual function can be improved is essential. This study presents measurements of peripheral dynamic contrast sensitivity (with optical correction) for off-axis viewing angles in subjects with CFL. PURPOSE: Subjects with CFL rely on a peripheral preferred retinal locus (PRL) for many visual tasks. It is therefore important to ascertain that contrast sensitivity (CS) is maximized in the PRL. This study evaluates the effect of stimulus motion, in combination with optical correction, on CS in subjects with CFL. METHODS: The off-axis refractive errors in the PRL of five young CFL subjects were measured with a COAS open-view Hartmann-Shack aberrometer. Low-contrast (25% and 10%) and high-contrast resolution acuity for stationary gratings was assessed with and without optical correction. High-contrast resolution was also measured for gratings drifting at 7.5 Hz (within a fixed Gaussian window). Furthermore, resolution CS was evaluated for both stationary and moving gratings with optical correction for a total of two to three spatial frequencies per subject. RESULTS: High-contrast resolution acuity was relatively insensitive to stimulus drift motion of 7.5 Hz, whereas CS for gratings of 0.5 cycles per degree improved with drift for all subjects. Furthermore, both high- and low-contrast static resolution improved with optical correction. CONCLUSIONS: Just as for healthy eyes, stimulus motion of 7.5 Hz enhances CS for gratings of low spatial frequency also in the PRL of eyes with CFL. Concurrently, high-contrast resolution is unaffected by the 7.5-Hz drift but improves with off-axis optical correction. This highlights the importance of providing optimal refractive correction for subjects with CFL and that stimulus motion can be used to further enhance CS at low spatial frequencies.


Subject(s)
Contrast Sensitivity/physiology , Scotoma/physiopathology , Aberrometry , Adult , Female , Humans , Male , Middle Aged , Refractive Errors/physiopathology , Retina/physiopathology , Vision, Low/physiopathology , Visual Acuity/physiology , Visual Fields/physiology
16.
Vision Res ; 138: 59-65, 2017 09.
Article in English | MEDLINE | ID: mdl-28739381

ABSTRACT

The blur experienced by our visual system is not uniform across the visual field. Additionally, lens designs with variable power profile such as contact lenses used in presbyopia correction and to control myopia progression create variable blur from the fovea to the periphery. The perceptual changes associated with varying blur profile across the visual field are unclear. We therefore measured the perceived neutral focus with images of different angular subtense (from 4° to 20°) and found that the amount of blur, for which focus is perceived as neutral, increases when the stimulus was extended to cover the parafovea. We also studied the changes in central perceived neutral focus after adaptation to images with similar magnitude of optical blur across the image or varying blur from center to the periphery. Altering the blur in the periphery had little or no effect on the shift of perceived neutral focus following adaptation to normal/blurred central images. These perceptual outcomes should be considered while designing bifocal optical solutions for myopia or presbyopia.


Subject(s)
Fovea Centralis/physiology , Refractive Errors/physiopathology , Visual Perception/physiology , Adaptation, Ocular/physiology , Adult , Female , Humans , Male , Visual Acuity/physiology
17.
Vision Res ; 133: 145-149, 2017 04.
Article in English | MEDLINE | ID: mdl-28268102

ABSTRACT

Optimal temporal modulation of the stimulus can improve foveal contrast sensitivity. This study evaluates the characteristics of the peripheral spatiotemporal contrast sensitivity function in normal-sighted subjects. The purpose is to identify a temporal modulation that can potentially improve the remaining peripheral visual function in subjects with central visual field loss. High contrast resolution cut-off for grating stimuli with four temporal frequencies (0, 5, 10 and 15Hz drift) was first evaluated in the 10° nasal visual field. Resolution contrast sensitivity for all temporal frequencies was then measured at four spatial frequencies between 0.5 cycles per degree (cpd) and the measured stationary cut-off. All measurements were performed with eccentric optical correction. Similar to foveal vision, peripheral contrast sensitivity is highest for a combination of low spatial frequency and 5-10Hz drift. At higher spatial frequencies, there was a decrease in contrast sensitivity with 15Hz drift. Despite this decrease, the resolution cut-off did not vary largely between the different temporal frequencies tested. Additional measurements of contrast sensitivity at 0.5 cpd and resolution cut-off for stationary (0Hz) and 7.5Hz stimuli performed at 10, 15, 20 and 25° in the nasal visual field also showed the same characteristics across eccentricities.


Subject(s)
Contrast Sensitivity/physiology , Visual Fields/physiology , Visual Perception/physiology , Adult , Female , Fovea Centralis , Humans , Male , Photic Stimulation/methods , Time Factors
18.
Vision Res ; 132: 3-33, 2017 03.
Article in English | MEDLINE | ID: mdl-28212982

ABSTRACT

Adaptive optics is a relatively new field, yet it is spreading rapidly and allows new questions to be asked about how the visual system is organized. The editors of this feature issue have posed a series of question to scientists involved in using adaptive optics in vision science. The questions are focused on three main areas. In the first we investigate the use of adaptive optics for psychophysical measurements of visual system function and for improving the optics of the eye. In the second, we look at the applications and impact of adaptive optics on retinal imaging and its promise for basic and applied research. In the third, we explore how adaptive optics is being used to improve our understanding of the neurophysiology of the visual system.


Subject(s)
Ocular Physiological Phenomena , Optics and Photonics , Retina/physiology , Vision Disorders/rehabilitation , Visual Perception/physiology , Animals , Humans , Psychophysics , Vision Disorders/physiopathology , Vision, Ocular/physiology
19.
J Vis ; 16(14): 9, 2016 11 01.
Article in English | MEDLINE | ID: mdl-27832270

ABSTRACT

The purpose of this study was to measure the transverse chromatic aberration (TCA) across the visual field of the human eye objectively. TCA was measured at horizontal and vertical field angles out to ±15° from foveal fixation in the right eye of four subjects. Interleaved retinal images were taken at wavelengths 543 nm and 842 nm in an adaptive optics scanning laser ophthalmoscope (AOSLO). To obtain true measures of the human eye's TCA, the contributions of the AOSLO system's TCA were measured using an on-axis aligned model eye and subtracted from the ocular data. The increase in TCA was found to be linear with eccentricity, with an average slope of 0.21 arcmin/degree of visual field angle (corresponding to 0.41 arcmin/degree for 430 nm to 770 nm). The absolute magnitude of ocular TCA varied between subjects, but was similar to the resolution acuity at 10° in the nasal visual field, encompassing three to four cones. Therefore, TCA can be visually significant. Furthermore, for high-resolution imaging applications, whether visualizing or stimulating cellular features in the retina, it is important to consider the lateral displacements between wavelengths and the variation in blur over the visual field.


Subject(s)
Color Perception/physiology , Color Vision Defects/physiopathology , Retinal Cone Photoreceptor Cells/physiology , Visual Fields/physiology , Adult , Emmetropia/physiology , Humans , Male , Ophthalmoscopy
20.
Invest Ophthalmol Vis Sci ; 57(13): 5443-5448, 2016 Oct 01.
Article in English | MEDLINE | ID: mdl-27760270

ABSTRACT

PURPOSE: To quantify the effect of induced stray light on halo size, luminance threshold, and contrast sensitivity. METHODS: Retinal stray light was induced in five healthy subjects using different photographic filters. The stray light induced ranged from levels observed in intraocular lenses (IOLs) with glistenings (low) to cataract level (high). The visual impact was measured for halo size, luminance detection threshold, and contrast sensitivity with and without a glare source. RESULTS: The amount of retinal stray light induced by the different filters was similar when measured using the psychophysical method and the optical bench method. Low amounts of induced stray light cause the halo size to increase by 21%, the luminance detection threshold to increase by 156%, and contrast sensitivity to decrease by 10% to 21% dependent on spatial frequency and presence of a glare source. The visual impact percentages for high amounts of induced stray light were, respectively, 76%, 2130%, and 30% to 49%. In the presence of a glare source, contrast sensitivity losses were larger and shifted to lower spatial frequencies. CONCLUSIONS: Low levels of retinal stray light can cause significant increases in halo sizes, elevations in luminance detection thresholds, and reductions in contrast sensitivity whether or not a glare source is present.


Subject(s)
Contrast Sensitivity/physiology , Light , Retina/physiopathology , Scattering, Radiation , Vision Disorders/etiology , Visual Acuity , Adult , Female , Glare , Healthy Volunteers , Humans , Male , Middle Aged , Psychophysics , Vision Disorders/diagnosis , Vision Disorders/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...